12th CODH Seminar
AI for Culture: From Japanese Art to Anime

Due to the spreading status of Novel Coronavirus Infection, we decided to postpone the 12th CODH Seminar. On February 21, nothing will be held. We plan to have the seminar in the same format later this year. New date will be announced later. Thank you for your understanding.


We welcome two distinguished guests, Yingtao Tian from Google Brain Tokyo, and Yanghua Jin from Preferred Networks, to discuss relationship between AI and culture, from Japanese art to anime, including topics such as new datasets, generative models and machine creativity.


Date February 21 (Fri), 2020 Postponed. New date will be announced later.
Venue 1208 Meeting Room (12F), National Institute of Informatics. Access to NII.
Fee Free
Registration in advance is required.
Capacity: 100 (Registration may be closed early)
Language English
No translation to Japanese
13:30 Open the venue
14:00-14:20 "Collection of Facial Expressions" and "KaoKore Dataset": Data-driven art history research and possibility of collaboration with machine learning Chikahiko Suzuki (ROIS-DS Center for Open Data in the Humanities / National Institute of Informatics)
14:20-15:05 KaoKore Dataset and its machine learning perspective Yingtao Tian (Google Brain Tokyo)
15:05-15:50 Exploring Anime Characters Creation with Deep Learning Yanghua Jin (Preferred Networks)
15:50-16:30 Discussion Moderator: Tarin Clanuwat (ROIS-DS Center for Open Data in the Humanities / National Institute of Informatics)


You are all invited, free of charge. Registration in advance is required using the following form.

Seminar is postponed. New date will be announced later.

Abstract and Bio

"Collection of Facial Expressions" and "KaoKore Dataset": Data-driven art history research and possibility of collaboration with machine learning

In my talk, I will explain “Collection of Facial Expressions (KaoKore)” and "KaoKore Dataset". KaoKore is a CODH project which collects images of faces from Japanese art works. This project aims to promote data-driven research in humanities, especially art history research field. I will introduce process of creating KaoKore and example of art history research using KaoKore. In the second half of my talk, I will explain “Kaoreko dataset” briefly. This dataset is rework of KaoKore in a machine learning friendly format. I would like to talk about expectations of collaboration between machine learning and art history research based on KaoKore dataset.

Chikahiko Suzuki (ROIS-DS Center for Open Data in the Humanities / National Institute of Informatics)

A Project Assistant Professor at the ROIS-DS Center for Open Data in the Humanities and National Institute of Informatics. After studying Art History, Cultural Resources Studies and Digital Humanities, his main research interest is in applying informatics and open data to humanities research fields. Currently, he is focusing on IIIF (international image interoperability framework).

Link: Collection of Facial Expressions (KaoKore)

KaoKore Dataset and its machine learning perspective

From classifying handwritten digits to generating strings of text, the datasets which have received long-time focus from the machine learning community vary greatly in their subject matter. This has motivated a renewed interest in creating datasets which are socially and culturally relevant, so that algorithmic research may have a more direct and immediate impact. One such area is in history and the humanities, where better machine learning models could help to accelerate research. Along this line, newly created benchmarks and models have been proposed for historical Japanese cursive writing. At the same time, using machine learning for historical Japanese illustrations and artwork has remained largely uncharted. In this talk, Yingtao would be presenting the proposed new dataset KaoKore, which consists of faces from Pre-modern Japanese Illustrations, as well as demonstrating its value as both a classification dataset as well as a creative and artistic dataset, which we explore using generative models. It is hoped that the presented work bridges the research of humanity and machine learning.

Yingtao Tian (Google Brain Tokyo)

Yingtao Tian is a Research Software Engineer in Google Brain Tokyo. Prior to that, he obtained his PhD at Stony Brook University in May 2019, advised by Prof. Steven Skiena. His research interests lie in generative models and representation learning, as well as their applications in natural language processing, knowledge base modeling, social network modeling, image generation and bioinformatics, and much more. His current focus concerns the intersection between generative models and agents interacting with external words, as well as bridging machine learning with humanity research.

Link: KaoKore Dataset

Exploring Anime Characters Creation with Deep Learning

Deep learning has shown great potentials of machine creativity. As a subarea of entertainment art, anime and manga have been a unique part of the Japanese economy and social culture. However, it takes tremendous efforts to master the skill of drawing, after which we are first capable of designing characters. In Preferred Networks, we are motivated to bridge the gap between amateurs and professional creators by adopting cutting-edge deep learning technologies. In this talk, I will present our recent efforts on exploring Japanese anime character creation with the help of machine creativity. More specifically, how we build practical systems to support amateurs to create their ideal anime characters and to automatically animate characters from a single illustration.

Yanghua Jin (Preferred Networks)

Yanghua Jin is a research engineer at Preferred Networks. Before that, he obtained an undergraduate degree in Computer Science and Engineering from Fudan University, Shanghai, China. His research interests include deep generative models and its application to Japanese animes and games. He founded the Crypko project to build real-world applications of anime deep generative models before joining Preferred Networks.

Link: Crypko

Past CODH Seminars


12th CODH Seminar - AI for Culture: From Japanese Art to Anime


11th CODH Seminar - Text Mining for Analyzing Research Communities: Sociological Topics and Socio-Technical Imaginaries


10th CODH Seminar - Document Analysis and Character Recognition


9th CODH Seminar - Computer Vision with Limited Labeled Data


8th CODH Seminar - Exploring Deep Learning for Classical Japanese Literature, Machine Creativity, and Recurrent World Models!


7th CODH Seminar - Manifold Mixup: Encouraging Meaningful On-Manifold Interpolation as a Regularizer


6th CODH Seminar: Historical Big Data - Challenges in Transforming Historical Documents to Structured Data for the Integrated Analysis of Records in the Past -


5th CODH Seminar: Trustworthy Data Repositories - Forum for Sharing Practical Information about CoreTrustSeal Certification -


4th CODH Seminar: A New Trend on Image Delivery in Digital Archives - IIIF's Potential for Standardization and Sophistication of Image Access -


3rd CODH Seminar: Usage of DOI for Humanities - Assignment of DOI for Scholarly Resources such as Research Data and Museum Collections -


2nd CODH Seminar: Old Japanese Character Challenge - Future of Machine Recognition and Human Transcription -


1st CODH Seminar: Big Data and Digital Humanities